

Seeing through the
clouds: Oversight at

multiple levels

White Paper

White Paper

Contents
Purpose ... 3

Problem 1 - Speed ... 3
Problem 2 - Cost .. 3
Problem 3 - Quality .. 3

Key Takeaways ... 3
Is ‘Hybrid IT’ a thing? .. 4
3 layer Model ... 4
Layer 1 – Supplier Management ... 6
Layer 2 – Service Owner ... 7

Consumption Bias .. 8
On ownership and control .. 9
Data Access Patterns .. 11
Data security .. 13
Reliability .. 14
Cost and commoditisation ... 15
On Switching suppliers .. 15
Scenario 2 .. 16

Layer 2 – Application Provider .. 18
Cost .. 18
Security .. 19
Quality .. 19
Reliability .. 19
Actions ... 19

Layer 3 – Application Owner ... 21
IaaS Boundary services. .. 22
Data Access Patterns .. 23
Data Security ... 23
Reliability .. 24
Cost .. 25

The changing role of ITIL in elastic environments .. 25
A note about CIs .. 25
Change Management .. 26
Recovery Practices .. 27
Incident and Event Management ... 28

White Paper

List of figures
Figure 1 - 3 Layer Structure .. 4
Figure 2 - Uber Service ... 7
Figure 3 - XaaS ... 8
Figure 4 - L2 Supplier Management ... 9
Figure 5 - Data Entities and Flows .. 13
Figure 6 - Application Provider .. 18
Figure 7 - Application Owner View .. 21
Figure 8 - Uber Layer 3 ... 22
Figure 9 - Data Entities and Flows .. 24
Figure 10 - In/Outward facing CIs ... 25
Figure 11 - Traditional Fault to Fix flow ... 28
Figure 12 - Streamlined Fault to Fix process .. 28
Figure 13 - Problem Diagnosis .. 29

List of tables
Table 1 - 3 Layer Descriptions .. 5
Table 2 - Supplier provided information .. 11
Table 3 - Consumer designed capabilities .. 11
Table 4 - Provided Information (X-ref) .. 18
Table 5 – Possible Actions .. 20
Table 6 - Public cloud aaS .. 23
Table 7 - CI Classes .. 26

White Paper

Purpose
To help the reader understand the facets that combine to make ‘Hybrid IT’, and what is required from an
organisational perspective to manage Hybrid IT. And in so doing realise how counterintuitive the name is, since
the IT management element never actually manages anything truly hybrid.

This paper does not address data governance in terms of ownership and regulatory control. Although clearly
important from a business perspective, it does not require IT ‘management’. It covers just the technical security
of data within the business service.

The paper is cast according to a 3-fold business problem, each of which in turn affects IT;

Problem 1 - Speed

A CEO demands a Digital Enterprise strategy that has pace. The demand for faster time to market from IT is
unavoidable

Problem 2 - Cost

The CFO demands a radical reduction in IT CapEx (for hardware and software)

Problem 3 - Quality

Traditional home-grown or first generation applications are slow and error prone during both deployment and
management

Key Takeaways
SaaS-first is preferable to cloud-first for the business. In order to compete, the democratisation of non-value
adding capability must be achieved with ruthless efficiency.

Although it is possible to be a provider of services using traditional IT methods, it is neither efficient to operate
in this way, nor is it in line with increasingly prevalent corporate goals.

A review of the applicability of ‘rigid’ ITIL processes needs to be undertaken in light of changing execution
practices.

Previously ‘hidden’ costs need to be exposed to consumers, and inefficiencies in the IT organisation that may
have always been present, but remain unaddressed need to be dealt with as a matter of urgency.

White Paper

Is ‘Hybrid IT’ a thing?
In short, YES! by definition; it is simply a mix of providers, on- or off-
premise, SaaS, PaaS, IaaS, public- and private cloud that provide
services to support your business in performing its [various] business
functions.

But, as will be seen within this paper Hybrid IT only really exists at the
enterprise level, comprising IT as a whole, where suppliers may exist
in-cloud or on-prem. Whilst a specific business service may be a
subset of this, the provision of a single application cannot be seen this
way

Although Hybrid IT initially sounds like an interpretation of [Gartners]
‘bi-modal’ IT, it is the goal of any IT organisation to be fastest that
their customers need them to be whilst operating at a sustainable cost
and not accepting any risk beyond the appetite of the business.

But to manage all of these things as one amorphous mass of
technology, applications and suppliers would be enormously difficult
(see sidebar). In this paper there is an assertion that there are 3 layers
of management. Although the body of the paper will focus on layer 2,
it requires information to be made available from layer 3, and likewise
passes information up to layer 1.

3 layer Model

Figure 1 - 3 Layer Structure

LoB IT
It is certainly not impossible to do
this, as it has been, and is being,
achieved by many IT organisations
and indeed lines of business for quite
some years. But achievement does
not necessarily mean ease, or
effectiveness.

Rogue, or shadow IT, or ‘citizen
developed’ applications are testament
to this, since the LoBs going down this
route have handed back difficult
decisions and architectural problems
back to IT when faced with the mire
of scale and governance

Business Service 1 Business Service 2 Business Service 3 Business Service n

Business

Technology

Application

Supp.
1

Supp.
7

Supp.
5

Supp.
3

Supp.
2

Supp.
8

Supp.
6

Supp.
4

AppDevPaaS
(Supp 3)

IaaS
(Supp 6)

Custom App
(Supp 7)

XaaS
(Supp 5)

XaaS
(Supp 3)

XaaS
(Supp 1)

XaaS
(Supp 6)

White Paper

Layer Description

Business Macro-scope --- the entire technology estate from ALL suppliers and ALL business service perspective. Multiple
service components may be provided by the same supplier for different services.--- Blue lines
Service owner scope --- the orchestration of specific suppliers within the confines of a specific business service.---
Turquoise lines
Interested in SaaS offerings only as these represent the best way of moving entirely to OpEx, require little or no IT
knowledge and leverages no/lo-code capabilities or an Integration Platform as a Service (IPaaS) provider for
integrations.
Data security is of primary importance as the only part of the service that remains ‘owned’.
Demanding of transparency from suppliers about reliability, cost and security. Plus control(ability) when any of the
aforementioned is impacted
Have zero control over the configuration of the application layer as provided by SaaS suppliers

Application The suppliers of SaaS offerings demanded by the business layer, to fit the speed, cost and security concerns.
Search for democratised ‘as a Service offerings’ from PaaS and IaaS providers that best support the custom value-add
for the application
Reliant on ‘Infrastructure as code’ for automated deployment as a mechanism to reduce cost (which can be passed
on to consumers) and improve control
Required to provide reliability, cost and security information to their consumer for analysis and optimisation.
They are demanding of transparency of information from their suppliers about reliability, cost and security.
Has no control over the configuration of the technology layer as provided by PaaS/IaaS/FaaS suppliers

Technology Suppliers of technology offerings that serve as base building blocks for the application layer.
Use automation as a matter of course to improve speed and control of delivery.
Required to provide reliability, cost and security information to their consumers for analysis and optimisation

Table 1 - 3 Layer Descriptions

The keen reader will notice that although there are 3 labels attributed to the layers, but the picture suggests 4
layers. The reason for that is that the management of Hybrid IT happens between the 4 layers in the picture.

• L1 – The supplier/service interface
• L2 – The service/application interface
• L3 – the application/technology interface

Throughout this paper the focus is on L2 – The service/application interface, addressing the other layers as it
touches them, and also addressing each summarily where there are notable differences between them and L2.

White Paper

Layer 1 – Supplier Management
To be completed

White Paper

Layer 2 – Service Owner
Acknowledging the evolving goals of most organisations as they embrace the technological adaptations
required for the digital transformation of the business;

‘Reduce cost in general, but removing as much capital expenditure as possible whilst increasing responsiveness
to the business (ultimately customer) demand, whilst maintaining or improving quality AND all within the
bounds of acceptable risk’…a tall order.

Business services can be viewed as loosely coupled groups of applications that work together to provide some
business outcome. They are dependent on each other when framed in the context of the data that must pass
between them, and from a technical level may be described as an ‘application group’

Let’s use Uber as an example of Service Owner scope (in Table 1 - 3 Layer Descriptions). It is a relatively simple
example since Uber only provides one business service, Passenger transportation. However, they do consume
applications provided by multiple suppliers, as well as creating some custom content themselves, and as we
shall see they democratise the platforms on which that ‘internal’ application runs also.

Figure 2 - Uber Service

Location Services

Email

Communications

Payments

Uber Value

White Paper

As such they look like many modern businesses and nicely fit into the 3-layer model. The figure below shows
the same conceptual model to describe Uber [at the L2 – The service/application interface].

Service Owners act on behalf of the business, regardless of whether their role exist as part of IT (Business
Relationship Manager) or the LoB (Service Delivery Manager), as such their goals are identical. They own the
optimisation of the service along the competing lines of speed, cost, quality and risk. They have as per Problem
2 - Cost, a very clear mandate, reduction of CapEx. And as such the approach is not ‘cloud-first’1 as IaaS and
PaaS providers are fond of saying, but ‘SaaS-first’. Uber has used this approach in choosing suppliers Braintree
and Twillio etc, to provide services that are required, but not part of the core Uber value proposition.

In a traditional world this might be construed as, ‘buy-don’t-
build’ as was common when software was only ever installed
on premise. COTS software purchased and installed as such
was touted as ‘better’ from a supportability perspective, which
is still the case. However, it failed to allow for the pain of
upgrades and its integration into the wider business service
topology and its associated cost. It also has a ‘bought but
seldom used’ tag associated with it in many cases. SaaS
offerings greatly improve on this.

If you are a young enterprise wanting to craft, or consume a
new business service, a SaaS only scenario is going to work to your advantage immediately. In Ubers case, for it
to be able to deliver on its [at the time] unique offering it would need to develop some in-house capability
(‘Uber value’ in Figure 2 - Uber Service) alongside these SaaS applications, in much the same way as an existing
enterprise on their ‘journey to cloud’ has mature business processes and services that have been customised
[over many years] to fit the specific needs of their business (magenta item in Figure 3 – XaaS service). This is
provided by internal IT, only when made possible by the ability of IT to provide the service on level terms with its
service components siblings, as a service2

Consumption Bias

It is very easy therefore to measure progress on the goal of becoming OpEx oriented (Problem 2 - Cost). Simply
measure the proportion of your business service that is consumed rather than owned.

1 Those seeking a cloud first strategy are application developers whose likely intent is that their developed application will be provided using a SaaS model, thereby completing the circle.
2 Although it is possible to provide applications using a traditional (manual) IT environment. To be part of a business service with the speed and reliability attributes necessary to solve the
problems highlighted in Is ‘Hybrid IT’ a thing? this means processes and controls that are available by a high degree of automation and transparency

Pause for Thought: Is this Hybrid IT
Management?

Yes, if you consider Hybrid IT to be the use of
central IT services and 3P SaaS providers.

No, if you consider that we are managing only
SaaS providers, regardless of whether they are
internal or external

Business Service 1

Business

Application

Supp
.1

Supp.
7

Supp
.5

Supp
.3

Supp
.6

XaaS
(Supp 5)

XaaS
(Supp 3)

XaaS
(Supp 1)

XaaS
(Supp 6)

Custom App
(Supp 7)

Figure 3 - XaaS

White Paper

Whilst a proportional measure is sufficient in service terms, as with most
business metrics a financial measure is preferred, so a better to quantify the
ratio of CapEx to OpEx costs in currency terms for any given business
service.

As a key and substantial metric towards a business goal there is no other
single indicator that shows progress as well as this one. Only when internal
IT is used in a traditional manner (without cost attribution) or managed
services on owned infrastructure would this value be anything but a 100%
OpEx output.

As you can probably guess consumption driven IT has a significant
implication on the IT operating model as will be described throughout this
paper.

On ownership and control

Figure 4 - L2 Supplier Management

Unlike L1 – The supplier/service interface, a business service owner,
managing suppliers at L2 – The service/application interface is only interested in the management of the
suppliers of the applications that make up a single business service, regardless of whether they are provided in
cloud or on premise (turquoise lines in

Figure 4 - L2 Supplier Management). This is wholly the responsibility of the consuming service owner, but can
be and is typically delegated to technical owners in IT. Whilst the business service owner is responsible for the
output of the business service they do not care how it operates see Jason Bloombergs [Forbes] post ‘In search
of the elusive citizen integrator’.

Since each application is provided as a service, neither IT, acting
as the owner of the service composition, nor the business, has
the ability or the right to dig deeper into how the service is
provided and which technology and/or suppliers are used for
any lower level application component. This is different from
traditional central IT provided applications that are ‘owned’
(CapEx). The consumer3 must trust the supplier to provide;

• The information necessary for them to make decisions, and
• The ability for them to take action based on those decisions, ideally in an autonomous way
Importantly, this is also true for the providers of the custom application. The in-house developers of the
application must provide the same level of information as do SaaS providersfn1

What consumers must realise, is that the purchase of on-demand, consumable services is not the same as
ownership, there is no control or authority over the supply of that service, and you must manage them as such.

3 Business service owner or IT organisation acting on their behalf

Business Service 1

Supp
.1

Supp.
7

Supp
.5

Supp
.3

Supp
.6

A simple rule of thumb is that no layer [in the
3 layer model] needs to see further than the
top of the layer directly beneath it i.e that
which is explicitly exposed by the lower layer

2 Hats
Elements of managing
provision, consumption (and
integration) of service
components exists in new
structures as it has always
has [albeit unrecognised] in
traditional IT.

The goal should be to push
commoditis-able elements
down [and eventually out
of] your organisation to
eliminate CapEx, and
minimise OpEx. Creating the
ability to adapt service and
application configurations
quickly, through exceptional
design and supplier choices.

https://intellyx.com/2018/01/22/in-search-of-the-elusive-citizen-integrator/
https://intellyx.com/2018/01/22/in-search-of-the-elusive-citizen-integrator/

White Paper

Layer 2 management is the gathering of information from the application layer is a way that is helpful to the
business layer, and that may, or may not cause the service owner to take action based on that information. But
what is this useful information?

In short, it is only that information that allows them to 1) select a supplier (decision criteria in Table 2), and 2)
optimise the application (optimisation capability in Table 2) that they receive from that supplier (through
configuration).

Decisions to work with a specific supplier are made infrequently, so can be made by humans, on human
timescales, of the order of days, weeks or months. But once the supplier has been onboarded then future
interactions can, and should, be made by machine, with one notable exception…enhancements4

But at this management layer we must also consider the interaction between the application ‘siblings’. Like a
parent of children, your actions for one child may, or may not be affected by the behaviour of another. This
means the management layer must take some responsibility for the configuration of a single application and the
service as a whole, and this means deciding what to do with the information provided.

 Decision criteria examples Optimising capability examples

Security SDC
• Levels of assurance for data recovery and
integrity
• Security criteria certification

SOC
• Authentication failures
• Logging data access requests/sources
• Customised endpoint security
• Authentication and authorisation

Reliability RDC
• Levels of assurance for availability and recovery
• Point of presence locations
• Capacity

ROC
• Ability to design tolerance and scaling
• points of presence traffic/change

Quality QRC
• Systemic information access
• Systemic configuration and control capability
• Partnerships

QOC
• General activity logs (when did something change),
consumer or provider initiated
• [Re-]Configuration by API
• Performance metrics (of the provided application
per consumer) against upper bound
• Thresholding

Cost CRC
• [Multiple] attractive cost bands

COC
• On-going consumption
• Thresholding
• Suggestions

4 Feature creation or extension specific to the need of a particular consumer. These would be raised as backlog items in the SaaS providers development backlog, where, if an increasing

proportion of end consumers request the same or similar functionality would raise its priority in the backlog, and would result in either an enhancement to an existing product, or a new
product entirely. It may be assumed that defects may be raised in a similar manner, however, this process is wholly within the realm of the application developer/curator to ‘catch’ and
resolve as part of their operational practices, as such is described in Incident and Event Management.

White Paper

Table 2 - Supplier provided information

But what about the information that SaaS suppliers need to provide during the consumption of their application.
These ‘metrics’ allow the service owner to manipulate the application in order that they can optimise it, in the
context of the business service they own. Let’s call these ‘designed capabilities’, that are the responsibility of the
service owner using supplier provided information or capability.

They are management level decisions at the level of the business service that can be made with no user
interaction either retroactively, or by design (preferred). All information and actions therefore must be accessible
systemically (via APIs or web service perhaps) and not require human interaction5. This means leveraging the
abilities of [Enterprise] Architects, Data Managers and API Managers throughout the operational life of the
business service, not just during a ‘design’ phase.

The implication being hardest hitting for those traditional IT organisations wanting to participate in this
ecosystem: They must be capable of delivering the optimising capabilities described in Table 2 on-demand (not
retrospectively). As such, this means that they must be reliant on automation6, and enable systems, rather than
processes (and humans) to provide the information as necessary.

 Designed capability examples

Security • Integrity and security of data in transit. Along the data flow paths between SaaS entities
• Using the available capabilities to ensure the attack surface of the business service is optimised for the data.
Authentication mechanisms, encryption and access controls.

Reliability • Ensuring that the consumed application is available at the point of consumption, within acceptable
performance within cost boundaries.
• Automatic scaling within and between offering bands
• Point of consumption health checks
• Automated sibling reconfiguration after configuration change. e.g. failover.

Quality • Rulesets – creation of triggering points e.g. for failover, or scaling. Bounds of operation before human
intervention is required
• Algorithms – Workload analysis patterns. Is data demand coming from where it is expected (security). Do the
SaaS point of presence need to be reconfigured (quality)
• Integrations – Optimising data flows between applications acceptable within the security configuration
bounds based on gathered endpoint traffic analysis.
• Automation - What are the [automatic] responses when the (un-)expected happens?

Cost • Optimisation of costs through assessment of where the workload is running and data low paths. Perhaps
through automated switching within and between applications, or by changing business processes
• Influencing the demand profile of the application

Table 3 - Consumer designed capabilities

Data Access Patterns

Data pattern analysis of workloads is a key capability, not just as part of security, but in terms of quality of the
application from a consumer perspective, and where trade-offs need to be made against budgetary constraints.
It will allow the determination of;

• Security and Quality --- Expected or unexpected data traffic flow between applications and between
consumers and applications.

5 A consumer of a business service should never have a need to request access to a ‘specific’ application that is part of the service. It should be handled at the business layer (via a request

catalogue), that is provided by the service owner, or by proxy, at the management layer.
6 They will use the capabilities of democratised technology providers operating at the Technology provider to make this possible leveraging Infrastructure as code to make and define the

request. This is the level of private cloud to provide the automation. Traditional IT structures are typically too reactive and people oriented to be able to cope with the provision of
information in this manner.

White Paper

• Cost and Quality --- Data volumes transferred.
Whether you are designing a new business service from scratch, or are in the process of migrating your services
(application groups) to SaaS providers, how, and from where, data is consumed by end users, how it flows
between various applications within your business service (application group) are crucial factors to be aware of.

Data Pattern Control-ability

Data access is controllable, semi-controllable and uncontrollable, this is related to the fact that systems can be
controlled, internal users are reasonably controllable, whilst external users are ‘in the wild’, their choices about
from where, and when they interact with services are beyond control.

As has been the case for decades, systems running chatty applications should be placed together in a single
datacentre to improve the end user experience for the service as a whole. However, traditional datacentres may
have evolved from a computer room in the same location as the internal users that have accessed those
systems. As the computer room grew they have been relocated to dedicated datacentres that may or may not
be close to the users. Little consideration was given to the reduction of quality in terms of user experience that
may have followed, as it was potentially offset by increasing data transfer rates offered by technology. Often this
has been in tandem with the globalisation of the business and associated relocation of internal users so a ‘net-
zero’ effect may have been assumed, but never validated. There are always trade-offs that need to be made
between location (quality of experience) and cost. Only now, as business move to cloud7, and to a lesser extent
SaaS solutions are capabilities being introduced to quantify and qualify the ‘chattiness’ of application groups in
order to mitigate any costly oversight.

Whilst the above considers applications suitable for internal users, where we can move either systems (easy) or
personnel (harder) to optimise the user experience, where the service is made available publicly, the location of
the accessing users could potentially be anywhere around the globe. This provides additional complexity into
the designed responses of the service.

The ability to know how data flows, between where, and at what volumes is important both during design and
in operation of your environment. The ability to recognise and influence that same data and your consumers is
a fundamental part of optimising any business service on SaaS.

The key question for architects and data managers to ask is;
‘How can I design operational response(s) into my service
when data access patterns differ from those expected?’ I
have asked all my suppliers to provide me the right
information, and they have granted me the ability to
systemically take actions, why would there be a need to
continue to be so reliant on humans to tell me that things
are not working as they should. All I need to know is that something did happen and when the design [of the
service] worked around it, automatically. Designers (service developers) can then figure out WHY this happened
at a later time.

• How should the service respond if it detects that it is being accessed from an unauthorised source, either
human or system?

• What happens if there is a spike in data volumes, how should the service validate that the spike is as a result
of business demand or an attack?

• Certain data flows only exist at specific frequencies, how can I optimise for that?
Consider putting in place an analysis regime that can answer these questions, both at time of design and during
operation [ideally using the same techniques].

7 In public cloud data egress has a cost. Often even between locations within the same public cloud provider

Do not congratulate yourself for measurement
alone! The ability and frequency which with you
can measure data and demand patterns is
secondary to being able to respond effectively
[through design] to these variables.

White Paper

Data security

Data remains as important in SaaS structures as is in a confined datacentre environment, probably even more
so, since it is almost all that is ‘owned’ of the service. Providers must be trusted to act responsibly with your data.

Data exists in 2 states;

• At rest – Red circles in the below figure, and
• In transit – Yellow lines in the below figure terminated with yellow circles as accessible end-points
Both must be secured, but each can be considered separately. As with everything related to security (and
operations in general), prevention is better than cure. This, by implication, is in the remit of designers not
operators.

Figure 5 - Data Entities and Flows

The endpoints (yellow circles) in combination will be evident to any security aware IT staffer as the attack
surface. They must be secured as a point of entry into your data8.

Penetration testing and vulnerability scanning is a hurdle that traditional
projects have undergone at time of application instantiation prior to
moving into production, once this gate has passed it is seen as a
problem for operations, these ‘one and done’ practices can no longer be
the case as the SaaS applications being consumed are evolving
continuously as part of the development methods employed by the SaaS
providers.

Providers must assure that their services are as secure as intended9. But
it would be remiss to take guarantee on trust alone and must ensure
that suppliers are doing their job well. However, targeting suppliers with
scanning and penetration on a whim is ill advised, as their response may simply be to take down [your part of]
their SaaS application (or even their entire their service) as they see it as an attack. There must be an agreement
in place on how this can happen periodically, and systematically, using tools or more non-conventional
techniques such as hackathons or game days where challenges are set to access your data.

As well as endpoint protection there is the data whilst in transit between
endpoints. Architectural decisions need to be made as how this should
be achieved. This must be a design choice of L2 – The
service/application interface since it is unknown to the providers how a
specific service might want to accomplish this10. Plus, the service owner
(as a representative of the LoB) must provide some guidance on the
importance of the service data.

8 Not systems, as at layer 2 there is no responsibility for the systems that provide the application, this is within the remit of the application provider in the layer beneath
9 Note that this does not have to mean highly secure in all cases, since consumers have differencing requirements for security and some providers may only address part of the market
10 Providers are on the hook for providing an agnostic mechanism of achieving this

Some suppliers may be particularly
sensitive to this as they are on the
hook for segregating data for many
organisations, but on the whole they
should welcome it as it only serves to
improve their security capabilities
too.

We can make the assumption that it
does indeed need to be secured since
it passes between SaaS services via
the internet and the internet is
inherently ‘open’ by default, and as a
result insecure.

Management

XaaS
(Supp 5)

XaaS
(Supp 3)

XaaS
(Supp 1)

XaaS
(Supp 6)

Custom App
(Supp 7)

White Paper

Which brings us to data at rest. It cannot be avoided that data must reside on the storage systems of suppliers
at some point, and for varying lengths of time, but you must decide how, and by what/whom it can be
accessed. In most cases it will only be a ‘what’ (the application) that should need access to the data, so why
provide human access? Data should be obfuscated from administrators of SaaS providers, and most will provide

this capability by default, either by encryption or by advanced role based
access, including multi-tenancy (included as part of the cost). Users that
require access to applications should be authenticated using a trusted
system and authorised using some role-based access control system
(RBAC).

Only when combined have you considered all of the above have you
addressed all the concerns of data security. But this does not mean that

have all possible options covered. Again being proactive is key, use of defensive or offensive hackathons will
validate the operational capability for data integrity. Defensive methods are about the improvement of existing
measures, whereas offensive hackathons are about forcing your way into a system through potential weak
points and known, or unknown vulnerabilities.

But what happens if you do discover some new vulnerability, or hole, or access risk? Is this an incident? No! It is
merely a discovery, a defect of the service, to be handled (prioritised) by the service owner. In the worst case, on
discovery the link with the errant provider is severed, and either switched to an alternate (if the system was
designed for that) or wait until the provider to resolves the issue. There has been many as case where breached
systems have been suspended whilst the severity of any attack or flaw has been validated and verified. And
whilst the naysayers say there will be significant brand damage, this has never been catastrophic [for the biggest
players] and tendencies to bounce back are remarkable. [Ref: Target, Yahoo!]

Reliability

IT operations exists because unknown things happen, and those
things need a response. This response is also unknown (at least the
first time) so takes time to define and complete. This has been as a
result in the separation of development and operations functions. The
historical figure of the programmer analyst, where the responsibility
was combined no longer exists, and has resulted in a ‘throw it over
the wall’ mentality that allows the developers to be measured on
speed of development and operations to on uptime, and never the
twain shall meet. In this mix, quality is often imbued on operations and
measured in terms of availability and performance. Using reactive
measures such as these as the key metrics of quality is the epitome of
denial within IT. Fooled into believing that since these metrics are
gathered close to the consumer (and easy to measure) that they must
be correct. However, they have relatively low importance if we
improve the reliability of the service during design.

What we need to get much better at is;

• Recognising failure modes during design and build, and embedding
responses into the design of services (and applications)

• Forcing the failure modes, through being proactive, therefore
making the unknown more known.

The above are self-reinforcing when used together, where forced
failures improve the design of the service, and embedded responses
reduce the amount of failures. Whilst there are still going to be unknown scenarios, the availability of SaaS and
other elastic environments allow for a seminal shift in perspective, through deliberately testing failure modes
and their associated Recovery Practices.

Testing and
Production
As ‘operational’ metrics are
gathered from non-production
environments it blurs the line
between the environments
themselves.

If the changes required are small
enough then why not test them in
production? E.g. A/B or canary
testing

In SaaS environments the service
is ‘always’ in production

Encryption, for example, creates
latency as it needs to be decrypted at
time of use, so brings with it a trade-
off decision

White Paper

Cost and commoditisation

Where all other factors are the same, the only factor to compete on is price. Cost comparison is required by
similar providers, especially where the service is commoditised. A close to real-time analysis might be needed to
choose the optimum provider at any specific time, similar to those provided by CDN broker Cedexis; content
streaming capabilities are pretty much identical between providers, but at different times, locations, or based on
demand, the quality of service may be worth paying a higher price for, rather than the defaulting to the lowest
cost option. Whilst this is may be most appropriate for those commoditised platform service at Hybrid IT Layer 3
– Application Owner it may also be relevant for Hybrid IT Management Layer 2 – Business Service Owner.

On Switching suppliers

It has been noted in this paper that one of the possible responses to
threat or issue is that we can switch provider. Whilst this is indeed
possible it does have its downsides.

If you are consuming SaaS services only then it is a matter of re-integrat-
ability. The mechanism where you must be able to make supplier
applications ‘talk’ to each other by facilitating the required data flow.

This explains the increasing presence of Integration Platform as a Service
providers to facilitate these connections (and switching of connections)
in companies such as MuleSoft. Plus the increasing use of low-code/no-
code techniques that simply allow the connection of applications with no
coding skills in the recognition that Hybrid IT Management Layer 2 –
Business Service Owner is within the reach of non-IT personnel with little,
or no IT knowledge the so-called ‘citizen integrator’

But at Hybrid IT Management Layer 2 – Business Service Owner, there is
also ‘data lock-in’ since the format of data for a specific provider is
seldom the same as another provider. This technical ‘barriers to exit’
must be overcome during any switch of providers. The perceived
benefits, cost or otherwise, must be greater than the cost of getting over
the barrier. This necessarily means that switching providers is not a
decision that can be taken [by IT] without the decision passing by the
business service owner, or architect, who is aware of budgetary
constraints and other principles in play. As such it can only ever be a
strategic decision rather than an operational one.

A similar process is in play in Hybrid IT Layer 3 – Application Owner systems at the IaaS/PaaS layer as the data
transfer costs between PaaS providers form part of the barriers to exit, the other part is the application
architecture, if it is reliant on specific functions provided by the PaaS provider, leading to 2 distinct possibilities;

• Applications must be re-factored at time of switch, or
• The capability to switch is built into the application from the start.
Whilst the former allows a degree of flexibility, it is a zero-value activity with associated cost. The latter adds
complexity to any application and requires additional maintenance, increasing the overall price of the product.
And further, relies on the original designer knowing the future possibilities of ‘the best’ alternative even before it
might even exist. There are, however, certain circumstances in which these issues are lessened. Consider the use
of containers [running on Kubernetes orchestration]; these products are an almost perfect commodity where the
application can be transferred between providers for only the cost of the data transfer with no refactoring.

Scenario 1

An initial analysis of data flow within the existing datacentre has discovered a single application that provides
reporting services. The single server on which the software is installed runs 24x7x365 but only generates reports
once per month. The application requires about 4 hours to perform the report generation using data from

Capability
Comparison
One must also be aware of
developments of the service of
your chosen provider, as this
may enhance the ability to
make decisions and/or take
action in a particular scenario.

Also, developments in the
competitive landscape of your
provider. Whilst we have talked
about the fact that there are
barriers to exit (or lock-in) to
specific providers. Analysis of the
market may reveal that the
benefits of such a move
outweigh those pitfalls.

https://www.cedexis.com/
https://www.mulesoft.com/

White Paper

applications in the same datacentre. The data is accessed by HR users in multiple locations around the globe
from a website (part of the reporting application) as static content.

A simplistic look at the solution is to move the existing server to
an IaaS/PaaS provider (public cloud) such as AWS or Azure, this
would allow for the server to be spun up only at the time that it is
required, thereby saving money on redundant energy costs.
However, application management and ownership still resides
with the business, and only in part achieves a desired goal of
moving CapEx to OpEx. Data ingress from applications still
residing in a local datacentre is free. However, access to the
reports by end users results in data egress costs, since the
website is supplied with the application. Additionally, if
redundancy is required this too will be additional cost that needs
to be borne in data transfer.

As has been stated the preference of most business consumers
should be ‘SaaS-first’ and the movement should not be of
technology, rather capability. Look for a SaaS solution that
provides reporting capability similar to what the installed
application provides. This shifts both report generation and
application maintenance to the provider (true OpEx) and is
provided on a consumption basis. The tariffication of the SaaS
offering hides any data egress charges since they are bundled in
a pay-per-use consumption wrapper. As a consumer we should
not care what technology is used to produce the reports, but just
the fact that they ARE produced.

The questions that the consumer needs to ask (as relates to
management) are;

1. Is the service provided as reliable as it needs to be in the context of the service it supports?
2. Is the data transfer and storage as secure as it needs to be for the type of data involved?
3. How are my consumers going to be affected by locational performance issues?
4. How much does it cost?
The responses to these questions should be built into the design of the service, rather than into an operational
response. Operational design is not a new concept, however, current IT operations practice only exists because
sub-par development and design practices within the enterprise community and the ‘throw it over the wall’
philosophy that prevails. DevOps practices are beginning to redress this (see Reliability).

There are potential additional benefits in practice of SaaS. Reporting is able to be made fault tolerant easily,
depending on the capabilities of the provider, at potentially at little incremental cost, since the existing scale of
the SaaS provider means that they are not creating new capability, merely leveraging existing capacity.
Choosing the right provider allows you to reach your intended consumers at the best location using provider
points of presence, (or a SaaS CDN provider).

Scenario 2

In a traditional environment the amount of consumption is predefined as part of the requirements gathering
phase and often at peak load, the providers will be chosen based on their capacity to achieve this, as well as on
other measures. This has a defined cost which needs to be approved. And this defined capacity approach leads
to a static design.

In Hybrid IT Management Layer 2 – Business Service Owner, budget is still approved but asynchronously from
the design at L1. The design is variable and is based on a least load capacity with the required redundancy for
data and computational power, this redundancy provides the required availability throughout the points of

Is it required?
Considering the technological
aspect of the business service may
not be all that is required. It may be
the correct time to address the
business process in use.

Do all the users accessing the data
need to be spread globally or is
there an option of optimising the
human elements of the process?

Are the reports REALLY required?
What decisions are made using the
report data? And can then be
addressed using more automated
processes?

White Paper

presence where required. Changes to demand are catered for in the design up to an upper bound defined by
the budget. Changes within these upper and lower bounds are enabled automatically through designed
elasticity. A trigger is created when the growth of the system is such that it will breach the upper bound (and
therefore budget), only then will a change be initiated and is cost driven. Any change implementation therefore
is much less frequent and no longer a response to something happening, but a prediction of something that
may happen.

Whilst at Hybrid IT Layer 3 – Application Owner, mechanisms are in place that allow this to happen within a
single application the service as a whole relies on the fact that changes in one application may require that
changes in a sibling application may also need to happen, an orchestration system needs to be in place that
picks up an event from an API and is capable of triggering action into another API. Perhaps an application
provider has failed over to its alternate location, which means that data flowing flow it would not be allowed to
enter a sibling application due to security rules designed into the application, the ability to change these rules
without human intervention is key to the autonomic nature of the application and to avoid potential downtime
in the service.

White Paper

Layer 2 – Application Provider
In Hybrid IT Management Layer 2 – Business Service Owner there is a huge dependence on the ability of the
provider to make the consumer aware of what is happening for the consumed part of the service, [NOT the
SaaS application as a whole] particularly where it affects cost, security or reliability;

When combined with similar information from all suppliers and passed through an analytics engine with
appropriate algorithms, there may be insights gleaned about areas in which there are service optimisation
possibilities. Coupled with a ruleset codified during service design, or through service operation this can trigger
automated action being taken [invoked by a ‘receiving’ API] to autonomously reconfigure the service.

These autonomous actions are also very likely to be affected by factors outside of IT. Consider marketing
running a sales campaign for a product available on an e-commerce site, may require proactive action to be
taken on the sizing of the applications. The cost of which is borne by the product category owners rather than
through an IT budget. In the ideal scenario the design would accommodate these peak loads but by exception
this may still be true.

Figure 6 - Application Provider

Drawing on the information from Hybrid IT Management Layer 2 – Business Service Owner, and with the
knowledge that the Business Service Owner sees just as ‘a.n.other application provider’ (supplier #7) we have an
obligation to provide certain information (outbound), and certain capabilities (inbound). Let’s summarise some
examples that have been mentioned to this point.

Area Information Reference

Security Access and Authentication
Traffic Logs – source and destination

Data Access Patterns
Data security

Cost Cost per consumed application Cost and commoditisation

Reliability Application availability
Optionally internal performance

Reliability

Quality Activity Logs
Traffic Logs – end user demand

Data Access Patterns

Action Configuration capabilities Actions

Table 4 - Provided Information (X-ref)

Cost

The total cost of consuming the application for the current billing period. Optionally, but ideally, with current
rate of consumption information and burndown.

The information is easier for an internal application owner to provide since the created application is ‘custom’
for the business and has only a single consumer. However, traditional IT has historically had trouble identifying
all costs associated with the provision of service, hence the lack of internal chargeback regimen in most
organisations, so may find this difficult to achieve.

Outward-facing

Inward-facing Custom App
(Supp 7)

White Paper

Also, this structure is inherently expensive as is not built for scale. If the IT organisation could provide the same
application to multiple LoB users, or external consumers (multi-tenant) then costs can be spread accordingly
and becomes more competitive against potential SaaS players, but this adds another complexity layer to already
difficult cost identification.

Security

The provision of log information that is related to security. This is not to expose ALL security related information
to the consumer, just from where and by whom/what data is being accessed and any data access attempts,
either failed or successful.

This requires that adequate capability exists and is in place within the provider, both at the network and
application layers and can be separated from the rest of the IT estate.

Quality

Activity logs from the application as relates to configuration that applies to the consumer. It merely requires that
the application is developed in such a way that it tracks its own configuration changes.

Network traffic and data demand patterns for end-point consumption need to be available such that decisions
can be made on the most appropriate placement of the application relative to demand. Subject to security, data
and cost constraints

Did the application require to be failed over to an alternate site? Since there may be actions required to be
taken to handle this failover on sibling applications.

If a request to scale the application was received or if an additional point of presence was requested, did this
complete successfully and within what timeframe.

Reliability

The exposure of application availability information. Is the application running? And available for consumption
for ALL customers at ALL application locations, this is not the same as the ability of ‘sibling’ applications to be
able to connect to the application (service component).

This is a relatively simple health-check that should always correspond to the consumers monitoring of the same
measure for a single application consumed by a single consumer at the same location, any difference is
addressable by the service owner. For multi-tenanted applications then this is the baseline by which consumer
monitored availability is measured.

There are no promises for performance, since this is within the remit of the consumers’ configuration. For this
not to be the case it would have to be consumed as a managed service with a separate and agreed SLA

Actions

Providing information is OK, but the consumer also wishes to configure the application without interaction with
an intermediate person, since this saves time.

A minimal solution would be to provide a self-service portal for reconfiguration of the application, but although
this would remove supplier side human interaction it does rely on consumer side interaction, and as has been
said throughout the first section, the responses should be automated to address Problem 1 - Speed, and due to
the removal of human error Problem 3 - Quality.

With this in mind the solution can only be to provide configuration capabilities systemically;

• Move point of presence location
• Scale up the application
• Shut down the application

White Paper

• Limit access; by role, and by destination
Failure to provide any of the above, may result in IT being marginalised as a provider

Information Possible Action Area

Data transfer to/from SaaS application Scale application up/out Cost

Sources of demand Move SaaS Points of presence Quality

Authentication errors, invalid connection attempts Quarantine Security

New users added/old users removed None (compliance only) Security

Computational/transactional load decrease Scale application down, reduce points of presence Cost

Computational/transactional load increase Multiple points of presence or CDN Quality

Table 5 – Possible Actions

White Paper

Layer 3 – Application Owner
This section describes the differences between a ‘traditional’ IT
perspective and the growing requirements of an IT organisation
assisting a business driving towards digital transformation and the
problems described in Is ‘Hybrid IT’ a thing? It looks from the
perspective of the owner of an ‘internally’ provided application, where
the owner of the application is part of the business that consumes it. It
can be assumed that all other SaaS application providers work in a
similar way, within [or as] their own organisations. The IT organisation of
which the application development team is a part knows that the
business needs them to provide and maintain an application that can
be consumed easily as part of a bigger business service.

In Figure 7 - Application Owner View (and other figures throughout this
paper) each ‘box’ is a discrete entity, the ‘internal’ methods and
practices used to provide the various components are not important
when viewed from the consumer perspective, and therefore ANY
mechanism can be used, although some are more likely than others to
be more able to support the solution of Problem 1 - Speed and
Problem 3 - Quality.

In the previous 2 sections it has been noted that each layer consumes
some information, and is also the provider of information, sometimes
this can be simply passed through the system, other times it needs to
be generated, or transformed on the way. The figure below has a
similar structure of one we visited in Figure 3 – XaaS service.

The areas of concern remain the same as for the business service.

• Is the application compliant from a security perspective?
• Is the application resilient?
• Does it provide sufficient assurance over quality, performance and

availability
• And can it be provided at acceptable cost

Figure 7 - Application Owner View

Similarly to the business service, and because of Problem 2 - Cost we would like to reduce the amount of work
done, both in development and operation by internal teams, the onus is on the application owner to pass on
the responsibility of most of the low level functions to suppliers, and consume them as a service.

At this level [public] ‘cloud first’ offerings are very appealing. As they do away with ownership of operational
maintenance of various elements. For instance, in IaaS we no longer have to worry about hardware, for PaaS
services such as databases, we no longer need to worry about patching, clearly a drain on the resources of
internal IT.

Custom App
(Supp 7)

Technology

Application

AppDevPaaS
(Supp 3)

IaaS
(Supp 6)

Operational
Excellence
Within each provider the
mechanisms by which
applications (also services) are
operationalised within IT is not
relevant to the provision of the
service itself.

Whilst it may be good practice
to measure improvement in
terms of operational excellence.
None of these metrics are
important to the consumers of
the applications provided

- How available and
performant your systems are.
- How many incidents have
been created/resolved and in
what time, and
- How much automation you
have.

White Paper

The use of IaaS services therefore is less appealing than those of the higher level services like PaaS and FaaS
(function as a service), the so-called serverless capabilities of public cloud providers. (see below)

Figure 8 - Uber Layer 3

In Figure 8 - Uber Layer 3, the Uber example is taken to the next level11. The application, Uber Value is distilled
into its various components, where commoditisable offerings are passed to low-level technology (public-cloud)
vendors, allowing Uber to concentrate on its value; creating algorithms to get drivers to passengers for the right
price.

IaaS Boundary services.

11 This is for example only and is not intended to represent Ubers ‘actual’ topology. In fact it is highly likely not to use any IaaS services, but use Functions as a service (Lambda) and/or

higher level services for the machine learning platform, although for this example this simplified structure is sufficient

 IaaS IaaS Boundary PaaS

Example Storage VM Database

Operational Maintenance None Security – compliance and
patch management
OS management

None

Development/Deployment As Code as part of the
application

As Code as part of the
application

As Code as part of the
application

Uber Value

IaaS (Infrastructure)

PaaS (Database)

Algorithm(s)

White Paper

Table 6 - Public cloud aaS

There is much confusion amongst those with a traditional view about what public cloud (IaaS) providers actually
provide. This stems from the fact that they see the ‘cloud’ as an extension to the on-premise virtual [machine]
infrastructure that they know and love, it is not! Amazon Web Services attempted to prevent this confusion by
calling its service Elastic Compute Cloud, but since EC2 is a nice abbreviation the nuance is lost.

Virtual Machines would be a PaaS service as they contain an operating system. EC2 and its peer equivalents
from Azure and GCP however, are not, they are just a bunch of compute resources from various ‘blocks’ of
infrastructure in a datacentre that only come together as a server at time of request12. Cloud providers in their
benevolence have attempted to make life easy for consumers, by allowing them to choose an operating system
to put on top (to make the compute useful), the cost of which is included in the pricing. Though this may
appear like what they are providing is a VM [with an operating system], they are not. The operating system is
the choice of the requestor and remains the responsibility of the requestor during operation. So whilst
consumed SaaS applications at L2 – The service/application interface leaves only security (and some quality)
concerns to address operationally, PaaS and IaaS leave us with much more operational responsibility, and not
truly broaching the OpEx criterion of Problem 2 - Cost.

It is here therefore that we must remind ourselves that the strategy should not be ‘cloud –first’ but SaaS first for
the business as a whole. Cloud-first strategies should be by exception only, and are [largely] restricted to the
developer domain (see Reliability below), i.e. within the scope of IT. IT needs to understand this to be a partner
in any digital transformation of the business, this may be a hard pill to swallow and people are very protective of
the status quo as it affects their jobs.

Having said this, within the scope of this paper it is considered that the application required is not available
through SaaS, and is to be developed internally, and created on a cloud provided service to minimise (though
not remove) operational cost.

Data Access Patterns

The principles that apply at L3 – the application/technology interface are largely the same as those at L2 – The
service/application interface. Although unlike at L2 where applications can either run on-prem or in-cloud for a
specific service, components of an application likely to be co-located, all on cloud, or all on prem. Since there is
imperative to reduce CapEx and the associated choice of cloud-bases IaaS and PaaS providers is it extremely
likely that the application [code] will run on public cloud, for reasons we shall see.

Traffic analysis and logging between application components now also becomes important from a cost
perspective, as well as for security and quality. Since IaaS/PaaS providers charge by data egress, between cloud
regions13, and to end consumers14.

The design of the application should be ‘responsive’, i.e it uses this information directly from the suppliers of the
information, or via an intermediary that has transformed it into usable insight, in close to real time, so that
action can be taken as and when appropriate.

Data Security

Application Owners are custodians of consumer data; data must be secure between the application code as it
travels between IaaS/PaaS elements and when resident on them, e.g database datastores, message queuing
systems, or plain old storage, as required by the business service, noting that some business services do not
require security of the nth degree. As with everything related to security (and operations in general), prevention
is better than cure.

12 Put together by software through a declarative definition as part of the request process (the software defined datacentre)
13 Also between cloud and on-prem components, although mixed environments will be rare due to cost constraints
14 End consumers may be people using the application or other applications within the context of a business service.

White Paper

Figure 9 - Data Entities and Flows

This by definition is in the remit of designers not operators, and must be a design choice of the Hybrid IT Layer
3 – Application Owner though it is

1. Invisible to application consumers (business service owners), and
2. Unnecessary information for IaaS/PaaS service providers themselves
Again, similarly to L2 – The service/application interface, appropriate access controls, proactive penetration
testing and vulnerability scanning is required continuously. Operating systems still need to be patched, and
application owner responsibility in this model, as an IaaS service. Databases, however, as an example of a PaaS
service may need to be disconnected, if the vulnerability is so severe (e.g SQL injection)

Reliability

As has been noted, at L3 – the application/technology interface, data egress is a major concern. This was not a
problem for L2 with SaaS providers as data movement costs are absorbed into the cost of the service. It has
implications on the design of application resilience; data egress between cloud regions (or to another on-prem
or cloud service) implies a cost (in most cases).

L3 – the application/technology interface is the ‘true’ playground of DevOps as a quality and automation driven
practice. At this layer the application code is joined with any provided IaaS and PaaS services to form a
complete application. Since the application may call the IaaS and PaaS elements directly this appears to blur the
lines between siblings (at the application component level). DevOps is the return of the programmer analyst,
albeit as a team rather than an individual; ‘if YOU create it, YOU run it!’ The application owner at this level
should ask ‘How do things break? And, what information can be provided so that potential breakages can be 1)
detected, and 2) counteracted? Both, when combined, should be
viewed as a defect of design, not of operation. Any activities to
work around the detected problem during operation should be
built into the service design. See The changing role of ITIL in
elastic environments.

As indicated in Figure 7 - Application Owner View there is
continuous ownership between the application itself and the
application code provided by internal application developers (the
same providing organisation). This is DevOps! As such, unlike L2 – The service/application interface, the AppDev
provider is VERY likely to know a lot about their siblings and how they are consumed, but not their operation.
They, as well as their application component siblings are on the hook to provide auditability during release in
the same way as described in Design vs change vs release vs audit.

This is a key change to the metrics that are required for quality (see Reliability). They are related to problem
resolution in terms of cycle time for defects for identified problems. However, this cycle time should not only be
for defects caused by problems in production, it should include those that have been generated in pre-
production phases [that are related to quality].

Management

AppDevIaaS
(Supp 6)

PaaS
(Supp 3)

Whilst DevOps may be seen as something
that applies to custom developed applications
at L3, when applied to SaaS providers at L2
the same principle is seen; the supplier
providing the application is the same one that
is responsible for operating it.

White Paper

Cost

Where all other factors are the same, the only factor to compete on is price. Cost comparison is required by
similar providers, especially where the service is commoditised, for IaaS providers the obvious commodity is
containers, especially those orchestrated through Kubernetes, rapidly becoming the de facto option for
container orchestration. A close to real-time analysis might be needed to choose the optimum provider at any
specific time, similar to those provided by CloudGenera. These costs must be accommodated in the price of
the provided application, and be designed with these considerations in mind.

These costs need to be minimised within trade-off boundaries, since provision of an application in the cheapest
cloud region (see Reliability) may not always offer the desired performance of the application. Thus, knowledge
of the use of the application is important (see Data Access Patterns).

This is possible where we are also part of the same business as the service owner, (and where custom
application providers have an advantage over pure SaaS providers) but has obvious implications over
placement during design.

The changing role of ITIL in elastic environments
In highly automated, elastic environment the general principles alter the bias with which some ITIL practices are
used. They affect how CIs are viewed, and services are designed, and its implications for configuration
management. How automation affects change management and other IT Operations practices such as change
management, incident management and event management.

A note about CIs

With the assumption that we do not need to know any detail below one layer beneath where we exist and ‘own’
relatively little of our provided application, in terms of the actions that can be taken to resolve issues, this
changes how CIs (Configuration Items) need to be represented, and the detail that any specific layer needs to
see. For simplicity, two major subsets can be defined;

Inward facing (provided systems)

A low-level or detailed view of specific building blocks;

• Application Layer – IaaS/PaaS providers and application code required to build applications
• Technology Layer - servers, routers, disks, database instances required to run application code or provide

PaaS, IaaS, FaaS services.

Outward facing (consumed services)

A high-level, logical view of collections of application or technology instances as a consumable service

Each has its own lifecycle in IT Service Management but both must be treated differently. Since any
‘management’ needs to happen only for the Outward-facing CIs, as they are exposed by the provider, and
available to consumers, outside the box in Figure 12. Inward-
facing CIs are visible only to IT personnel, inside the box in
Figure 12 as providers of a ‘service’ are subject to whatever
operational controls and processes are [currently] in place, be
they;

• Manual – often seen in traditional IT environments, or
• Automated – As part of SDDC, or internal or hosted private

cloud
This is a key point, since it need to be recognised that ‘management’ at either L2 or L3 is agnostic of the
processes that take place within individual suppliers.

Figure 10 - In/Outward facing CIs

Outward-facing

Inward-facing Custom App
(Supp 7)

https://www.cloudgenera.com/

White Paper

If CIs have changed then what does this mean for configuration management? In short, configuration
management is no longer about the management of individual instances, but management of configuration.
Where configuration could be any number of possible combinations of instances within the bounds of a pre-
determined (declared) configuration at design.

CI Class Typical
Scope

Perspective Example(s)

Provider Consumer

Inward
Facing Instance Facet of design, does not

care about end-use

None. (Knows that it must
exist, but does not care in
what specific form)

An infrastructure service --- a number of servers,
logically grouped together in a cluster.
A database service --- a TCP port made available
via a load balancer on a single IP (perhaps using
the infrastructure service).
An application service --- an exposed URL that
links to some software, (perhaps this is also
installed on an infrastructure service), but maybe
consumed as a service Outward

Facing Logical
None (provided there is
sufficient capacity)

A facet of deploy-ability.
Requires summary endpoint
information that describes
the consumable service

Table 7 - CI Classes

This means that no longer does a post-hoc operational ‘discovery’ of components need to take place. The
configuration is held as part of a document, written during design, but as code. During deployment the
designed configuration is made available to a configuration management system, but is merely a placeholder
for what might actually exist in reality (or virtuality as the case may be,
see sidebar).

Change Management

External facing CIs are consumed from the providers [as black boxes],
and typically are amalgamated into another, larger, business service
for consumption by end users. What would constitute a change in this
structure?

• The introduction or removal of a provider service – a change to
design

• An alteration in ‘interfacing’ between provider services – also, a
change to design

Therefore the CI’s that are relevant are design CIs, documents, actually
configuration ‘files’, that change in current practice would change
infrequently. But, as changes tend to releases (see below) may actually
increase in frequency.

In either case, the ability of configuration management to ingest
‘configuration’ rather than discover CIs becomes increasingly relevant.
(See sidebar)

However, the total changes to a service are greatly affected by the
change practices of the providing suppliers. Even though an
architecture may be fully responsive and resilient, your choices of
suppliers may not.

Configuration
Management
The traditional view is that each
server that is part of a cluster is a
CI, and the cluster itself is also a
CI. When a cluster member fails
we raise a ticket to fix it, or issue a
change request to replace it.

Consider now the AWS auto-
scaling group; we define the (max
and min) number of instances
that form the group and the
launch configuration and we leave
the provision of the system to
provider health checks.

The only level we are actually
interested is the group (or cluster)
level that provides the service

White Paper

Design vs change vs release vs audit

The ability of the service to self-heal must be built-into the service itself…automatically. Traditional change
management can be ‘designed out’ of a well-architected system as resilience, in the form of fault-tolerance and
elasticity, included as part of the design.

Consider simple A/B or multi variant testing and deployments to test resilience in production15. Setting up
tolerance for a SaaS providers is simple and recovery practices can be tested continuously, prior to services
being affected in a controlled way, leading to more confidence at the business level. If there is the confidence of
the business that any alternations made to the design can be accommodated as a matter of course what is the
need for traditional IT change processes? Approval is automatic since the risk is always low, since the service is
tolerant of change. This means changes can be automated. Once changes can be automated then releases can
be automated and the difference between a change and a release is not obvious. Once things are automated,
then you do not need to know that they are going to happen, you just need to know that they have, leaving
what used to be a cumbersome process as merely an auditable trail of activity (that can be provided to
consumers).

To achieve this, suppliers must be transparent in their change practices, as these need to be distinguishable
from downtime events. Although both types will impact your service, one affects operational SLA whilst the
other impacts architectural choice and an upper bound to the service operation, defining the SLA.

Releases should have ‘zero’ impact on the operational service, regardless of their ‘size’, in practice this means
that releases tend towards ‘small’ or even ‘very small’ (see types of change above). And the duration, as such,
should be minimised.

Recovery Practices

Each period where a service is unavailable is a cost to the business. This is particularly true when suppliers are
down, as downtime of a preferred supplier may mean using a more expensive alternative.

With this in mind; how often are the responses defined as part of actions to events [either security or system]
tested? How do you detect unknown failure modes? In traditional environments this is seldom done, simply
because of the inflexibility of the incumbent systems. The cost of this negative testing would be just too great.
However, with as-a-service components, this becomes more applicable.

With consumable services we no longer have to wait for specific, infrequent events to happen again in order
that we can test the response to any particular scenario, it is possible to spin up an exact replica of the
environment as it existed at the time of failure (or just before), and test the solution for repeatability, or better
still improve the design so that it no longer fails. Any common failure modes can then become part of standard,
automated testing as part of general practice during development.

However, this still relies on the problem affecting service at least once, how do we detect those potential
failures, prior to them happening, thereby proactively solving the problem? Ensure that application teams are
writing enough traps into their code that can be captured, likewise with state data via metrics.

But, how do you proactively discover security flaws or unintentional holes in your architecture? You run
hackathons and days when you specifically target the failure of your application whether it be production, some
preproduction environment or a mirror of production. Netflix takes this to the nth level with its simian army,
(Chaos Monkey available for use here)

The above is also true for workload placement and capacity, the ability of elastic environments to be (re-
)configured simply and easily means that multi variant testing can be used to determine the correct
configuration of resources in terms of scale or location, with reference to performance and cost.

15 This can also be used to test new cost patterns as well as more traditional feature testing. Consider a SaaS provider with multi levels of the same offering (Basic, Premium, Complete)

with each tier being rated on a data throughput per time increment basis, perhaps consuming the basic tier for 3 days is more costly that consuming the full tier for 12 hours with the
same result.

https://medium.com/netflix-techblog/the-netflix-simian-army-16e57fbab116
https://github.com/Netflix/SimianArmy

White Paper

Incident and Event Management

From an operational detection of faults perspective there are some attributes of highly elastic environments that
affect these processes;

1. Elastic environments are absolutely fault tolerant, any availability concern that would affect service can
immediately be routed around without impact to any consuming user.

2. Elastic environments are scalable without limit, so performance concerns are immediately mitigated by scaling
horizontally or vertically without impact to the consumer

If there is no impact to the consuming user in either case then there is no service outage (or degradation), if
there is no impact to service it follows that there is no incident. Through appropriate architectural practice, and
the ability of the service to ‘self-heal’. There is however, a problem to be solved.

Questions like the following still remain;

• Why was there a need to route round a potential availability issue?
• Why was there a need to scale [a part of] the service?
• What was happening within the service at the time of the intervention?
This is a significant differences in the bias that Incident management has within service management. Consider
the current [simplified] processes in place in many organisations.

Figure 11 - Traditional Fault to Fix flow

As has been said though, since the known failure modes are covered via automatic responses built into the
design this flow gets concatenated;

Event Management is not required in the traditional sense since there is no need for an operator (human) to
take ownership and/or action. If external detection capabilities are required then there may be some thin layer
of fault identification required, sufficient to call the autonomic response.

With and automatic response there is no service impact, this is preventative design. If there is no service impact
then there is no need for an incident. Lucky since without event management there is nothing to systemically
generate the incident. This relegates incident management to interactions with humans calling the helpdesk
function. And the relevance of traditional metrics such as availability, performance and MTBF as quantified
through the post-hoc reporting via incident resolution times is doubtful.

Since automated responses are standard changes, or releases, see above then change also disappears in favour
of release management and control

For known failure modes proactively identified using Recovery Practices, no one would argue that the below
isn’t a more streamline process, and requires less human interaction;

Figure 12 - Streamlined Fault to Fix process

Fault FixEvent

Fault Change

Work-
aroundProblem

IncidentEvent Fix

White Paper

But what about those the 3 remaining questions that were mentioned previously? Something had to happen
that resulted in a response (albeit automatic) by the designed system (service or application). In order for the
same thing not to happen again we need to take some mitigating action. This takes us down the missing branch

Figure 13 - Problem Diagnosis

In this process the response, and fault, are analysed for both correctness, and cause using tools that do not
require any prior knowledge of the expected state of the system. Gathering logs, metrics and other potential
influencing factors and combining them to determine why what happened did happen.

But what would change?

• The response to the known scenario, improving the quality of the response
• A change to the deployed system. An alteration to the design, or configuration file
• A net-new feature to the system. A new supplier, application, or feature. All facets of design, not operation
Returning to the use of incident based measurements of quality as raised in Reliability. These should then be
replaced by the ‘cycle time’ for defects raised via problems using the route in Figure 13 - Problem Diagnosis

Fault ReleaseDefectProblemEvent

	Purpose
	Problem 1 - Speed
	Problem 2 - Cost
	Problem 3 - Quality

	Key Takeaways
	Is ‘Hybrid IT’ a thing?
	3 layer Model
	Layer 1 – Supplier Management
	Layer 2 – Service Owner
	Consumption Bias
	On ownership and control
	Data Access Patterns
	Data Pattern Control-ability

	Data security
	Reliability
	Cost and commoditisation
	On Switching suppliers
	Scenario 1
	Scenario 2

	Layer 2 – Application Provider
	Cost
	Security
	Quality
	Reliability
	Actions

	Layer 3 – Application Owner
	IaaS Boundary services.
	Data Access Patterns
	Data Security
	Reliability
	Cost

	The changing role of ITIL in elastic environments
	A note about CIs
	Inward facing (provided systems)
	Outward facing (consumed services)

	Change Management
	Design vs change vs release vs audit

	Recovery Practices
	Incident and Event Management

